

Automatic Modeling of Dynamical Interactions Within Marine Ecosystems

Omar IKEN¹, Maxime FOLSCHETTE¹, Tony RIBEIRO²

- ¹ Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France
- ² Université de Nantes, Centrale Nantes, CNRS, LS2N, F-44000 Nantes, France

1. Introduction

Aim

Build a causal model from the observation of dynamical transitions of a marine ecosystem

Phytoplankton

Microscopic organisms that live in aquatic environments

- Basis of aquatic food
- Essential for the carbon cycle
- Produces a large part of the planet's oxygen

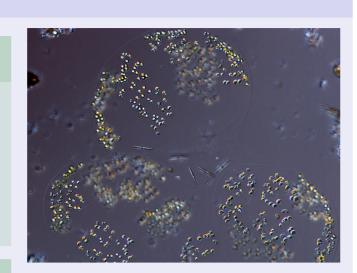


Figure: Phaeocystis (phytoplankton)

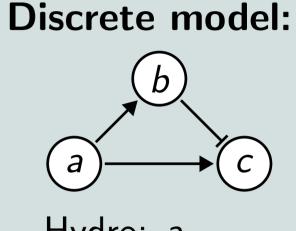
Figure: Effects of phytoplankton bloom

5. Learning From Interpretation Transition

LFIT infers a logic program that models the dynamics of a system as a set of logic rules that explain the observed transitions.

Transition: (feature state) \rightarrow (target state)

Rule: $\mathbf{v}_0^{\mathrm{val}_0} \leftarrow \mathbf{v}_1^{\mathrm{val}_1} \wedge \mathbf{v}_2^{\mathrm{val}_2} \wedge \mathbf{v}_3^{\mathrm{val}_3} \wedge \cdots \wedge \mathbf{v}_m^{\mathrm{val}_m}$

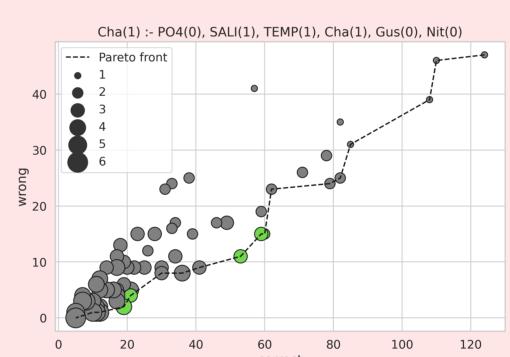


- variables : v_0, \ldots, v_m head: target variables (step t)
- values : val_0, \ldots, val_m body: feature variables (step t-1)

LFIT Pipeline

Input: Transitions Output: $a_{t-1} | b_{t-1} | c_{t-1} | b_t | c_t$

Logic program $\{b^0 \leftarrow a^0, b^1 \leftarrow a^1,$ $c_t^0 \leftarrow a^0, \quad b^1 \leftarrow b^1,$



Hydro: a Plankton: b, c

LFIT learns both likeliness & unlikeliness rules. Weighting rules by the number of verified observations produces a predictive model.

6. Improving rules

1,683 likeliness rules and 1,981 unlikeliness rules, accuracy: 0.67 Pareto frontier on subsets of the body of rules:

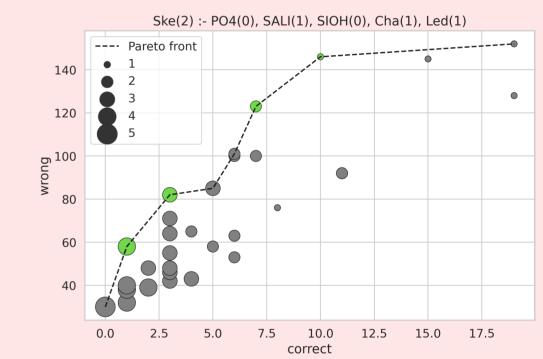


Figure: Pareto frontier of weighted combinations for two examples rules

1,609 likeliness rules and 1,405 unlikeliness rules, accuracy: 0.72

7. Influence Graph

Possible influences: activation $(a \xrightarrow{+} b)$ or inhibition $(a \xrightarrow{-} b)$ Process: compare values of targets with each feature atom

Influence Extraction

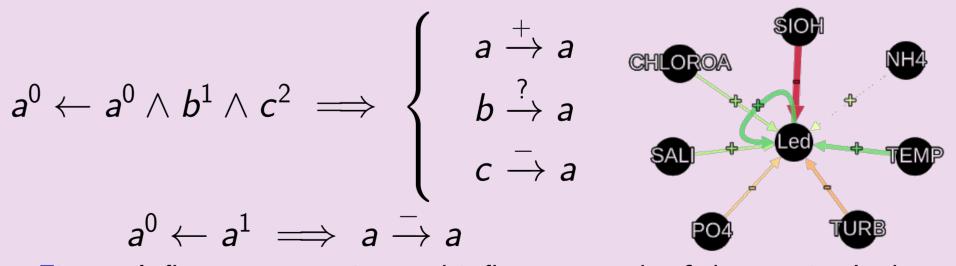


Figure: Influence extraction and influence graph of the species Led.

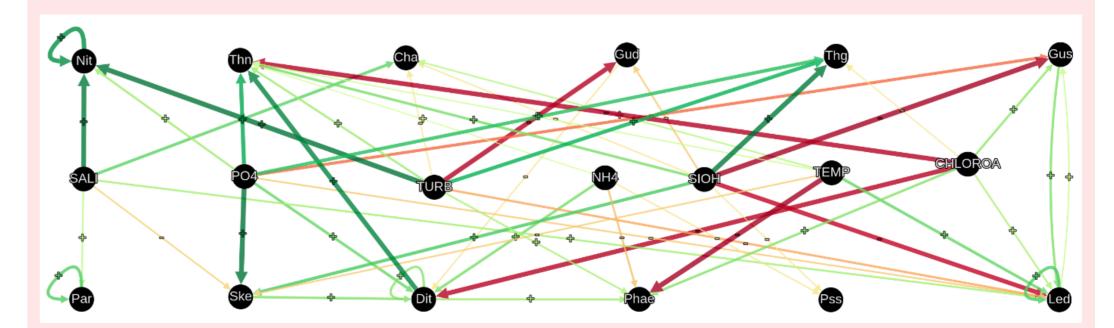
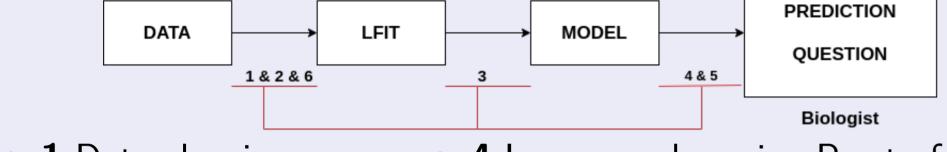



Figure: Influence graph between hydrological factors and phytoplankton species.

2. Methodology

- 1 Data cleaning
- 4 Improve rules using Pareto front • **5** Build influence graph
- 2 Discretize features • 3 Use *PyLFIT* API
- **6** Data augmentation

3. SRN Dataset

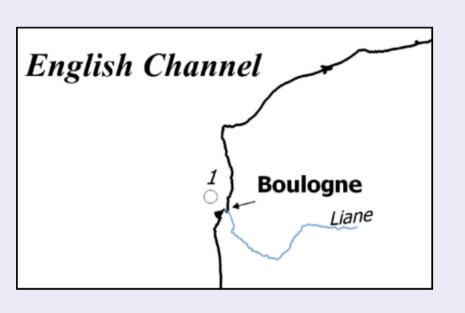


Figure: Chosen observation station

Figure: Blooms of phytoplankton

Sampling location	Sampling date	Taxon	Value	Туре	Sampling depth
001-P-015	1992-05-18	CHLOROA	6.0	Hydro	Surface (0-1m)
006-P-001	2019-12-02	Chaetoceros	1000.0	Plankton	Surface (0-1m)
002-P-007	1994-05-25	Pleurosigma	100.0	Plankton	Surface (0-1m)

Table: Example of samples from the SRN dataset

4. Data Preprocessing

Discretization	Machine Learning Settings
Hydrological factors Phytoplankton spec	ies ● 253 training transitions
• Level 0 if $X(t) \leq \operatorname{avg}(X)$ • Level 0 if $X(t) = 0$	 53 testing transitions
• Level 1 if $X(t) > \operatorname{avg}(X)$ • Level 1 if $X(t) \leq \operatorname{av}(X)$	g(X) • features: Hydro & Plankton
• Level 2 if $X(t) > av$	g(X) • targets: Plankton
0.8	TEMP CHLOROA PO4 Thn Phae 1 2 3 4 5 6 7 8 9 10 11 12 PassageDate PassageDate Po4 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure: Variation of some features over 2012 and their discretization

8. Perspectives

- Develop heuristics for discretization/Pareto frontier extraction.
- Adapt data augmentation methods to improve model accuracy.
- Provide theoretical guarantees over extracted influences.

Karasiewicz, S., Breton, E., Lefebvre, A., Hernandez Farinas, T., Lefebvre, S.: Realized niche analysis of phytoplankton communities involving HAB: Phaeocystis spp. as a case study. Harmful Algae 72, 1–13 (2018)